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Abstract

We document the extent to which major macroeconomic series, used to inform
linear DSGE models, can be characterized by power laws whose indices we estimate via
maximum likelihood. Assuming data follow a linear recursion with multiplicative noise,
low estimated indices suggest fat tails. We then ask whether standard DSGE models
under constant gain learning can replicate those fat tails by an appropriate increase in
the estimated gain and without much change in the transmission mechanism of shocks.
We find that is largely the case via implementation of a minimum distance estimation
method that eschews any allegiance to distributional assumptions.
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1. Introduction

The ability of linear dynamic stochastic general equilibrium (DSGE) models to adequately
account for macroeconomic fluctuations has come under scrutiny in light of the Great Re-
cession. Such large but rare events manifest themselves in the form of fat tails for data that
are usually employed in standard Gaussian empirical DSGE modeling under rational expec-
tations (RE). However, in the absence of additional assumptions on the stochastic nature
of innovations, standard DSGE models are unable to replicate observed large fluctuations.1

We show that a DSGE model under adaptive learning (AL) endogenously delivers model
dynamics that better replicate observed fat tails.
Existing DSGE analyses have explored at least three avenues to model large macro-

economic fluctuations. The first avenue replaces the assumption of Normally distributed
innovations with a fat-tailed specification (e.g. a Students’-t or Laplace). Fat tails in the
distribution of innovations allow for a higher probability that a large shock occurs and works
its way through standard transmission mechanisms. The second avenue replaces the assump-
tion of a constant variance for structural innovations with exogenous stochastic volatility
specifications. The idea is that if one introduces exogenous volatility into a DSGE shock
specification then macroeconomic variables will also exhibit the sort of volatility associated
with rare but large fluctuations. The third avenue introduces time variation in the struc-
tural parameters of a model which in turn generates time or state dependent responses of
economies to an otherwise constant variance shock process. All three avenues modify models
so that exogenous sources of volatility are introduced in order to match observed volatility.
Our analysis is closest to the third avenue and presents an endogenous channel via stochas-
tic gradient constant gain (SGCG) AL that delivers fat tails for endogenous variables in an
otherwise standard model.
AL is increasingly used by macroeconomists to bridge data-model gaps. Seminal work

on statistical learning (Sargent, 1993 and Evans and Honkapohja, 2001), additional insights
from a similar literature (Gaspar et. al., 2006, Orphanides and Williams, 2004, Milani, 2007,
Deak et. al., 2015, Massaro, 2013 and De Grauwe, 2012), and experimental evidence on the
importance of the learning process in accounting for business cycle fluctuations and volatility
(Duffy, 2012, Bao, Hommes, Sonnemans and Tuinstra, 2012, Jaimovich and Rebelo, 2007,
Adam and Woodford, 2012) provide strong support that AL is a reasonable alternative to
the standard RE DSGE setting. In contrast to the standard RE DSGE model, in which
agents know the true stochastic process of an economy, under AL agents revise their forecast
rules in response to incoming data so as to ascertain that stochastic process over time.2

This difference in how expectations are formed influences model dynamics. In particular,
under RE, model dynamics are described by a fixed coeffi cient vector autoregression (VAR).
Under SGCG learning however, model dynamics are described by a linear recursion with

1We use the term large fluctuations to mean that the frequency of realizations that deviate substantially
from the trend are higher than the frequencies of the same realizations under a Normal distribution.

2In the limit as the constant gain (g) of a SGCG learning process tends to zero, a model economy
approaches the RE solution (see Evans and Honkapohja, 2001).
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multiplicative and additive noise (LRMN) written as

Xt = ΦtXt−1 + εt, (1)

and with a stationary distribution for Xt different than that of a VAR due to the interplay
between the stochastic multiplicative term (Φt) and the stochastic additive term (εt).3 As
a function of the nature of the interplay, the applied mathematics literature shows that the
tail of the stationary distribution of Xt can be fatter than that of a Normal distribution (e.g.
Kesten, 1973). This implies that Xt can take on extreme values with a higher probability
than under a Normal distribution and thus this equation forms an alternative lens with which
to view data and an associated model economy. In a sense the intuition of a LRMN system
is as follows: as grains of sand pile up into a dune, at some point a grain falls that shifts the
dune dramatically, and this dramatic movement occurs with some regularity.4

Since under SGCG learning a DSGE model is written as a LRMN, one needs to change
the underlying assumption on the data generating process (DGP) from a fixed coeffi cient
VAR to a LRMN. Under this new assumption, the tail of the stationary distribution of data
(Yt) can be fat. We measure the thickness of the tail by estimating the tail index p under the
assumption that Yt ∼ Y −p (a power law), since under SGCG learning model variables are
distributed similarly. We also conduct a formal test to establish whether the hypothesized
power-law is a plausible fit to the data and our test statistics show that data that enter a
DSGE empirical exercise are usually not Normal.
We find that data exhibit characteristics consistent with a LRMN assumption on the

DGP. In particular, the data employed in DSGE models have fatter tails than would be
warranted under a Normality assumption. We implement a minimum distance estimation
exercise that allows us to jointly estimate model parameters including the constant gain (g).
Were our estimates of g small or near zero then model dynamics would approximate those of
a RE DSGE model. However, we find that estimates of g are non-zero and in fact higher than
in the current literature.5 A finding of a higher constant gain does not violate any theoretical
or empirical requirement that g be near zero (so an AL model is in a small vicinity of its RE
solution). Further we show that a model under RE with Normally distributed innovations,
or a model with fat-tailed distributions for innovations, is not able to come as close as a
DSGE model under SGCG AL in terms of being able to replicate fat tails observed in data.
These empirical and simulation results allow us to establish a central intuition, and

therefore our key contribution: given that a larger g reflects a shorter memory (learning
horizon), as g rises, macroeconomic variables are more likely to visit extreme values (deep
recessions and booms), simply because agents do not remember as much of history as they
could and therefore are bound to repeat it. Overall, we are able to show that without
departing fundamentally from the standard DSGE model, SGCG AL is enough to account

3Our definitions for the process Xt = ΦtXt−1+εt are as follows. If Φt is a constant matrix Φ then we call
it a fixed coeffi cient VAR. If Φt varies over time in a deterministic manner we call it a variable coeffi cient
VAR. If Φt is itself a stochastic process then we refer to the equation as a LRMN.

4For similar intuition relating to the notion of self-organized criticality that a LRMN represents, see
Blume et al. (2010).

5Malmendier and Nagel (2013) find evidence in favor of a constant gain (approximately 0.02) using survey
data on expectations across generations.
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for observed fat tails without altering the model’s fit to other distributional dimensions of
the data.
Having established the model and described related literature in Sections 2 and 3, we

set out the stylized facts for all major macroeconomic time series in Section 4. In Section
5 we reconcile data with model with a minimum distance exercise. Section 6 follows with
simulation exercises and we conclude in Section 7 with a re-statement of our central contri-
bution: that given the recurrent manner in which macroeconomic time series exhibit large
fluctuations, LRMN model representations may be more suitable to empirical analyses of
linear DSGE models.

2. Rational Expectations vs. Adaptive Learning

Linear DSGE models begin by specifying a familiar form

Xt = A(θ)Et(Xt+1) +B(θ)Ut, (2)

Ut = P (θ)Ut−1 + εt, E(εtε
′
t) = Σ(θ), (3)

where θ denotes a vector of parameters, Xt denotes all model variables (in logarithmic
deviations from respective steady state values) and εt denotes innovations to structural shock
processes (Ut) with Σ(θ) denoting the variance-covariance matrix of the innovations. The
next step in preparing a model for empirical analysis under RE is to replace expectations with
realizations and idiosyncratic expectational errors (ηt), one then obtains the form employed
by Sims (2001)

Γ0(θ)Xt = Γ1(θ)Xt−1 + Ψ(θ)εt + Π(θ)ηt. (4)

The RE solution to the above system yields the state equation that describes the evolution
of all model variables

Xt = F (θ)Xt−1 +G(θ)εt, (5)

which, when coupled with an observer equation

Yt = H ′Xt, (6)

where H is a selection matrix that links de-trended macroeconomic data (Yt) to model
variables, yields the state-space empirical representation of a linear DSGE model under RE.
Specifying, say, a Normal distribution for the innovations alongside a Kalman Filter allows
one to write down the likelihood function (L(Yt|θ)) employed in estimating parameters using,
for example, either Maximum Likelihood or Bayesian full-information techniques. Given
parameter estimates, the state equation is used to compute the usual objects of inquiry (e.g.
impulse responses, variance decompositions etc.).6 The key to such an empirical exercise
is data-model congruency: the assumption on the underlying DGP is that macroeconomic

6DeJong and Dave (2011) describe the details of implementing limited or full information empirical
exercises with either linear or non-linear DSGE models.
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data in their cyclic form follow a fixed-coeffi cient VAR

Yt = Φ̃Yt−1 + υt, E(υtυ
′
t) = Ω, (7)

and the model also follows this form in that the state equation (5) takes the form of a fixed-
coeffi cient VAR. This methodology, sometimes with extensions and variants (e.g. DSGE-
VARs) then forms the core of what is known as RE macroeconometrics.
The assumption that the DGP for Yt is a fixed-coeffi cient VAR is exactly that, an assump-

tion on an unknown DGP. In particular this assumption implies that the assumed distribu-
tion for υt translates into a similar stationary distribution of Yt, e.g. assuming υt ∼ N(0,Ω)
implies that data are also Normal with thin tails. So, under this assumption, in order to
generate large movements in Yt (e.g., rare but deep recessions or booms) one can assume a
fat-tailed distribution for υt (and correspondingly for εt) so that the conclusion is ‘fat tails
in, fat tails out’. Alternatively one could introduce stochastic volatility directly into the
specification of the stochastic properties of υt (and correspondingly for εt), or assume that
rare disasters strike the above process directly (as in Reitz, 1988 or Barro, 1999). Finally
one could argue, as we do, that a change in fundamental assumptions so that the DGP does
not take the form of a fixed-coeffi cient VAR but instead follows a LRMN, is warranted.
Assuming that the DGP follows a LRMN amounts to assuming that instead of (7), data

follow
Yt = ΦtYt−1 + ut (8)

where ut and Φt are both stochastic processes. Given precise assumptions on the nature of
stochasticity of the two processes, the applied mathematics and statistical theory literature
(starting with Kesten, 1973), suggests that the tail of the stationary distribution of Yt can
be fat despite ut following a thin-tailed distribution. If a model were to follow this form then
the conclusion would be ‘thin tails in, fat tails out’. This is because a LRMN accumulates
fundamentally differently than a fixed-coeffi cient VAR: even if E(Φt) < 1 it is still the case
that P (Φt > 1) > 0. This translates into the tail of the stationary distribution of Yt being
distributed Y −p where p− 1 measures the number of moments that exist for the underlying
distribution. When p is small, only p− 1 moments exist hence the tail is fatter while under
Normality p is large and all moments exist. So to endogenously generate large movements
in Yt in response to thin tailed shocks one assumes that the underlying DGP follows a
LRMN. How would an actual DSGE model then deliver the same form in response to a
change in a fundamental economic assumption? Under RE the state equation describing
model dynamics follows a fixed-coeffi cient VAR. We argue that changing assumptions on
expectations formation, from RE to SGCG AL, leads to a model representation being of the
LRMN form.
Following a large literature described in Evans and Honkapohja (2001), under AL agents

are presumed to only employ information up until time t− 1 in forming the required expec-
tations.7 This alters the original specification of the model to

Xt = A(θ)Et−1(Xt+1) +B(θ)Ut. (9)

7The timing assumption contains the information set on which an agent conditions her expectations. For
alternative timing assumptions (e.g. contamporenous timing), see Marcet and Sargent (1989).
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Under AL agents estimate their model of the dynamics of economic variables, called the
perceived law of motion (PLM), by recursive least squares, arguably the most common
estimation method in econometrics. The PLM has the same functional form as the RE equi-
librium but possibly different coeffi cients (bt) since agents do not know the RE equilibrium.
To estimate the PLM, agents use past data and then generate forecasts using the estimated
model. Thus, a PLM on the part of agents is conjectured as a time varying analog to the
RE solution:

Xt = btXt−1 + ξt, ξt ∼ iid(0,Ξ), (10)

which implies, given the timing assumption, that

Et−1(Xt+1) = b2t−1Xt−1.

Inserting this expression into (9) yields an actual law of motion (ALM) as

Xt = A(θ)b2t−1Xt−1 +B(θ)Ut. (11)

Finally, a specification for a learning rule that governs the evolution of bt is required; assuming
a SGCG rule yields8

bt = bt−1 + gXt−1(Xt −X ′t−1bt−1) (for a given b0). (12)

The next step is to insert the ALM in place of Xt in order to derive a LRMN for the
coeffi cients (bt). Large fluctuations in bt would then drive the same in Xt. However this
raises analytical issues since the driving processes (Ut) and innovations (εt) are far too
embedded in the model specification. That is, it is not possible to represent the equation for
bt solely as a function of the structural shocks Ut and/or innovations εt having inserted the
ALM into the SGCG learning rule.9 Therefore we consider the following alternate route to
demonstrate how under learning model dynamics follow a LRMN.
Usually the PLM is formed by assuming something close to a RE solution. For example,

above we assume that the PLM is a time varying VAR since the RE solution takes a VAR
form. Instead let’s assume that the PLM is a time varying moving average (MA) process

Xt = Φ̂tUt. (13)

Next, assume that Et−1(Xt+1) = Φ̂t−1Ut which yields the ALM

Xt = A(θ)Φ̂t−1Ut +B(θ)Ut. (14)

8Evans et. al (2010) extend the analysis of econometric learning to settings where agents allow for
parameter drift or parameter uncertainty in beliefs. With these features, they demonstrate that the SGCG
rule is a convenient and a natural way to model learning. Intuitively, if a true DGP of the economic
environment is a random walk, then it makes sense to weight recent observations more heavily (i.e. using a
constant gain rule for learning) than a decreasing gain formulation. This is because in such an environment
recent observations have more relevant information for forecasting the next realization.

9For univariate cases see Benhabib and Dave (2014).
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The evolution of Φ̂t is governed by the learning rule

Φ̂t = Φ̂t−1 + gUt−1(Xt − Φ̂t−1Ut−1) (15)

and inserting the ALM in place of Xt in the equation above yields

Φ̂t = [I + gA(θ)Ut−1Ut − gUt−1Ut−1] Φ̂t−1 + gB(θ)Ut−1Ut. (16)

The SGCG AL model can therefore be written as

Φ̂t = ΛtΦ̂t− 1 + Ωt, (17)

Λt = I + gA(θ)Ut−1Ut − gUt−1Ut−1, g ∈ (0, 1), (18)

Ωt = gB(θ)Ut−1Ut, (19)

Ut = P (θ)Ut−1 + εt. (20)

Next we recognize that the VAR process for structural errors can always be written in its
Wold representation (P (L)εt) yielding the LRMN system

Xt = Φ̂tP (L)εt (21)

Φ̂t = ΛtΦ̂t−1 + Ωt, (22)

Λt = I + gA(θ)P (L)2Lεtεt − gP (L)2L2εtεt, g ∈ (0, 1), (23)

Ωt = gB(θ)P (L)2L2εtεt. (24)

In this representation the multiplicative term Λt in equation (22) is now only a function
of the innovations εt in equation (23) suggesting that (following Kesten, 1973) the tail of
the stationary distribution of the coeffi cients Φ̂t may follow a power law. This would then
impart fat tails for Xt as well since Xt = Φ̂tUt.10 To show that the tail of the stationary
distribution of model variables Xt is fat as the constant gain increases, we map out the
relevant relationship with simulations. The intuition behind the simulations we provide is
straightforward: LRMN specifications suggest that small shocks (as is usually assumed in
linear DSGE modeling) accumulate in a particular way so as to lead to large movements in
model variables. Since the only assumption that has been altered is that of expectations
formation (from RE to SGCG AL) and given that SGCG AL has a straightforward interpre-
tation (that a high constant gain reflects either excessive structural change or agents have
short memories), the conclusion is straightforward: given a high constant gain it may be the
case that history repeats itself due to short memories and macroeconomic variables exhibit
“predictably rare”but large fluctuations from trend.

10The multivariate theory of recurrence relations with non iid shocks is not yet available (see Benhabib
and Dave (2014) and references therein for a review of that literature).
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3. Related Literature

Four strands of the existing literature are related to our analyses. First, recent empirical
findings suggest that data on macroeconomic variables of interest such as output growth and
inflation are seldom Normally distributed. Christiano (2007) provides pre-Great Recession
evidence and Ascari et. al. (2015) provides evidence for more recent time periods. Further,
Fagiolo et. al. (2008) show that in the USA and many OECD countries, output growth-rate
distributions can be well approximated by exponential power densities with tails much fatter
than those of a Normal distribution, implying that extreme output growth patterns tend to
be more frequent than what a Gaussian assumption would predict.
The second strand of literature addresses the above empirical regularities in macroeco-

nomic models. Broadly speaking, fat tails for endogenous variables in DSGE models emerge
via two basic sources of non-Normality. The first source replaces the Normality of shocks
that hit the economy with fat tailed shocks such as those distributed Laplace (see for e.g.,
Ascari et. al, 2015) or Student’s-t (see for e.g. Curdia et. al., 2014 and Chib and Rama-
murthy, 2014). In particular, Ascari et. al. (2015) show that exogenous fat tailed shocks
in workhorse models do not always translate into corresponding extreme events in macro-
economic time series; they suggest a need for endogenous mechanisms that deliver such
movements. Curdia et. al. (2014), on the other hand, use Smets and Wouter’s (2007)
model to show that the Gaussianity assumption in DSGE models is questionable, even after
allowing for low-frequency changes in the volatility of shocks. Moreover, their analyses show
that a Student’s-t specification is preferred by the data. However, the fat tails delivered
under these models could be the result of non-Gaussian distributions assumed for exogenous
errors. Moreover, simply replacing Normally distributed shocks with non-Gaussian shocks is
not without caveats. In particular, Müller (2013) describes some of the dangers associated
with departures from Gaussianity when the alternative shock distribution is also misspeci-
fied. In contrast, the second source attributes fat tails in macroeconomic variables due to
structural assumptions, even if a model is hit by purely thin-tailed uncorrelated innovations.
In this second channel, a natural point of departure from the traditional DSGE models is

to consider an alternative DGP, for example time-varying parameter specifications for VARs.
As a result, in the third strand of the literature, Cogley and Sargent (2001, 2005) suggest
that attributing adaptive behavior to agents can generate non-linearities observed in data
that can manifest themselves as drifting coeffi cients. Hence they specify time varying VARs
in addition to assuming stochastic volatility in innovations. Monache and Paterella (2014)
build on the framework of Cogley and Sargent (2001) by replacing Normally distributed
shocks with Student’s-t shocks.11 What these analyses suggest is that underlying adaptive
algorithms can help match features of the data including possibly non-Normal characteristics.
Thus, in the fourth strand of the literature, Milani (2011) evaluates the empirical role

of expectational shocks on business cycle fluctuations and relaxes the RE assumption to
exploit survey data on expectations in the estimation of a New Keynesian (NK) model
under learning. Milani (2005) studies whether learning can provide a reasonable source
of the observed persistence in inflation and finds that persistence depends on the learning

11In contrast, Sims (1980, 1999) and Bernanke and Mihov (1998a, 1998b) support the time invariant view
of macroeconomic data.
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speed. Primiceri (2009) further contributes to the discussion by demonstrating that in models
exhibiting self confirming equilibria as in Cho et. al. (2002) “...prolonged episodes of high
inflation ending with rapid disinflations can occur when policymakers underestimate [in a
learning algorithm] both the natural rate of unemployment and the persistence of inflation
in the Phillips curve.”This reflects a sort of fat-tailed behavior for inflation as a function of
constant gain learning. Marcet and Nicolini (2005) also consider a learning mechanism that
produces small departures from RE within the model to match episodes of hyperinflation.
A related literature considers the role of non-linearity originating from state dependence

in DSGE models to understand the dynamics of an economy (e.g., Auerbach and Gorod-
nichenko, 2012, Ferraresi et. al., 2015, Canzoneri et. al., 2016). Non-linearity is incorporated
by the possibility of a regime switch, for e.g., Franta (2015) introduces multi-regimes in the
shock propagation mechanism while in the context of learning, Marcet and Nicolini (2005),
Branch and Evans (2007) and Milani (2014) allow for a time-varying learning speed. Massaro
(2013) instead exogenously assumes multiple heuristics where agents discretely shift between
rules for expectations formation in an AL model.
Similar to the literature discussed above, we also appeal to the notion that the underly-

ing DGP of macroeconomic variables might not follow fixed coeffi cient VAR specifications.
However our point of departure is not time or state varying specifications but instead the
possibility that data follow LRMN processes. The key difference is that the multiplicative
and additive terms in such specifications are themselves stochastic processes. In the applied
statistical theory and mathematics literatures such specifications have been analyzed in or-
der to determine the limiting properties of these systems (see Kesten (1973), Goldie (1991),
Saporta (2005) and Roitershtein (2007)). In this literature the key is the fact that the vari-
able(s) of interest, being modeled as a LRMN, have stationary distributions whose tail is
approximated by a power law. The smaller the coeffi cient on that power law, the fatter the
tail. Application of these technical results can also be found in the macroeconomic literature
(see e.g., Benhabib (2009), Benhabib et. al., (2011) and Benhabib and Dave (2014)).

4. Power Law Stylized Facts

Clauset et. al. (2009) provide a statistical framework for quantifying power law behavior
in data and a procedure for measuring the fatness of tails. In this section we first briefly
explain Clauset et. al.’s (2009) approach. We then describe our data, present the fat tail
measures and discuss the interpretation of our documented facts.

4.1. Tail Index Estimation: Method

Clauset et. al.’s (2009) statistical framework seeks to quantify an interpretable index for
the thickness of the tails of data (Y ). In particular, data obey a power law if drawn from a
probability distribution (P (Y )) of the form

P (Y ) ∝ Y −p, (25)

where p is a constant parameter of the distribution-known as the exponent, scaling or tail
index. Only the values above some minimum threshold (denoted as Ymin) follow a power law
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and in such cases we say that the tail of the distribution is thick. Estimation of that index
proceeds as follows. Taking logarithms of (25) yields

ln(P (Y )) = −p ln(Y ) + C, (26)

where C is a constant and ln(P (Y )) captures the frequency of data approximated with a
histogram of observed Y . The above slope determines the thickness of the tail and can
be estimated via a least squares linear regression. A steeper negative slope (i.e. a higher
p) implies that the probability of larger values of ln(Y ) are less frequent compared to a
flatter negative slope (i.e. a smaller p). This procedure for estimating the tail index dates
back to Pareto’s work on wealth distributions (see Arnold, 1983). However, Clauset et. al.
(2009) show that such a least squares methodology is subjective in estimating the slope, and
may lead to systematic and significant errors. Clauset et. al. (2009) provide a maximum
likelihood (ML) procedure that yields an estimate of the form

p̂ = 1 + n

[
n∑
i=1

ln
Yi
Ymin

]−1
. (27)

where p̂ denotes the estimate derived from data Yi, i = 1, ..n, and Ymin ≤ Yi.12 The width of
the likelihood maximum estimator provides standard errors for p̂, given by13

σ =
p̂− 1√
n
o

(
1

n

)
. (28)

Additionally p̂−1measures the number of moments that exist for the underlying distribution.
If p̂ is small then the likelihood of Yi ≥ Ymin is high, higher moments of the distribution are
infinite and therefore an extreme event is more frequent hence the tail is fatter, and vice versa.
Apart from power laws, several distributions can exhibit fat tails, for example the exponential
(EP) distribution. The main difference between the EP versus power law distributions is that
the EP density is characterized by exponentially shaped tails which are thicker than that
of the Normal distribution but thinner than that of the power law distribution. Moreover,
unlike a power law distribution, the EP is characterized by finite moments of any order.14

To investigate if the hypothesized distribution of the data follows a power law, we conduct
a goodness-of-fit-test from Clauset et. al. (2009). This test is driven by the idea that even if
data are drawn from a power law, there will always be some small deviations from that law
merely due to the random nature of the sampling process (statistical fluctuations). There-
fore, the goodness-of fit-test allows us to distinguish deviations which are due to statistical

12Clauset et. al.’s (2009) method estimates Ymin and p according to the goodness-of-fit based method
described in Clauset, Shalizi, Newman (2007). The fitting procedure works as follows: 1) For each possible
choice of Ymin, p is estimated via ML, and the Kolmogorov-Smirnov goodness-of-fit statistic (denoted by D)
is calculated; 2) A value of Ymin, that gives the minimum value D over all values of Ymin is then selected as
the estimate of Ymin.
13For details of derivation of the likelihood function see Appendix B of Clauset et al. (2009).
14Note that one cannot directly compare the estimates of the tail index of the detrended data under a

power law distribution in our analyses with the EP of raw data (e.g. Fagiolo, 2008).
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fluctuations versus deviations that arise because the data are drawn from a non-power-law
distribution. The cut-off for the p-value of this is chosen based on the desired precision level
of test statistic. We use a p-value larger than 0.1 to indicate that the difference between
the empirical data and the model can be attributed to statistical fluctuations only and in
contrast a p-value closer to zero indicates that the model is not a plausible fit to the data.
Therefore estimates of tail indices are meaningful if this test is passed. Appendix A provides
further details on the goodness of fit test.

4.2. Data

The FRED database provides raw series on output, consumption, investment, prices,
population, money stocks and interest rates (GDPC96, PCECC96, GPDIC1, GDPDEF,
CNP16OV, M2SL and TB3MS respectively) spanning 1948-2014.15 With the raw data in
hand, per-capita series are constructed as:

Yt =
(GDPC96t/4)

CNP16OVt
× 1000000, Ct =

(PCECC96t/4)

CNP16OVt
× 1000000, (29)

It =
(GPDIC1t/4)

CNP16OVt
× 1000000, Mt =

(M2SLt/GDPDEFt)× 100

CNP16OVt
× 1000000, (30)

Pt =
GDPDEFt
GDPDEFt−1

, Rt =
1

(1− TB3MSt/400)
. (31)

We denote the natural logarithms of the above variables as yt = log(Yt), ct = log(Ct),
it = log(It), mt = log(Mt), πt = log(Pt) and rt = log(Rt). Each element of the set
{yt, ct, it,mt, πt, rt} can then be detrended using the various methods described in DeJong
and Dave (2011) in order to generate cyclic series, denoted as {ŷt, ĉt, ît, m̂t, π̂t, r̂t}.

4.3. Tail Index Estimation: Results

We first investigate if data detrended with the HP filter are indeed Normal using direct
tests (the Anderson-Darling, Shapiro-Wilk, Shapiro-Francia, Jarque-Bera and D’Agostino
and Pearson tests) and report the test decision based on the null hypothesis that our sample
come from a population with a Normal distribution. A rejection of this null hypothesis is
denoted by a 0 whereas a 1 denotes that we are unable to reject the null hypothesis. We
conduct these tests at both the 5% and 10% significance levels. Our results, presented in
Table 1, show that at a 10% significance level, all tests reject the null hypothesis for output,
investment, inflation and interest rate but not for consumption and money. In the last five
rows of Table 1, we present the same results at a 5% significance level and we see that test
decisions stay consistent for all the variables except output for which we fail to reject the
null under the first three tests. Overall, we conclude that there is evidence of non-Normality
for output, investment, inflation and interest rates (at a 10% significance level), but not so
much for consumption and money.

15The last three time series are monthly so we compute monthly averages to obtain data at a quarterly
frequency.
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Table 1. Normality of Cyclical Components
Test (α = 0.1) ŷt ĉt ît m̂t π̂t r̂t
Anderson-Darling 0 1 0 1 0 0
Shapiro-Wilk 0 1 0 1 0 0
Shapiro-Francia 0 1 0 1 0 0
Jarque-Bera 0 1 0 1 0 0
D’Agostino & Pearson 0 1 0 1 0 0

Test (α = 0.05) ŷt ĉt ît m̂t π̂t r̂t
Anderson-Darling 1 1 0 1 0 0
Shapiro-Wilk 1 1 0 1 0 0
Shapiro-Francia 1 1 0 1 0 0
Jarque-Bera 0 1 0 1 0 0
D’Agostino & Pearson 0 1 0 1 0 0

Since we have now established that our data for output, inflation and the interest rate
are non-Normal, we estimate the tail index for these variables using the procedure described
in Section 4.1.16 For each of these series we report: estimates of its tail index (p̂) along
with associated standard errors (s.e.) in Table 2. Additionally, the table also provides the
p-value which is based on a goodness-of-fit test as described in Section 4.1. Since Canova
(1998) showed that the choice of detrending method can affect business cycle stylized facts,
we estimate tail indices under all of the various detrending methods usually employed in
DSGE models.

Table 2. Tail Index Estimates For Cyclical Components
First Difference Linear Trend HP-Filter Quarterly
p̂ (s.e.) p-value p̂ (s.e.) p-value p̂ (s.e.) p-value

ŷt 5.1386 (4.1865) 0.5748 3.7068 (8.9334) 0.0001 3.6395 (0.7147) 0.1963
π̂t 2.6608 (0.5990) 0.289 5.0594 (1.941) 0.5574 2.4898 (0.3698) 0.6086
r̂t 3.1239 (0.9867) 0.2492 3.2615 (0.7651) 0.0572 4.8631 (1.4991) 0.4289

CF-Filter BK-Filter HP-Filter Annual
p̂ (s.e.) p-value p̂ (s.e.) p-value p̂ (s.e.) p-value

ŷt 3.3663 (0.4459) 0.3871 4.2914 (2.1432) 0.2198 3.5418 (1.7982) 0.6890
π̂t 2.1743 (0.2365) 0.0283 2.6515 (0.2434) 0.7541 2.2822 ( 1.7989 ) 0.6157
r̂t 4.116 (2.2901) 0.0742 4.9127 (1.4759) 0.6415 3.4639 (1.7954) 0.4039

Qualitatively, Table 2 shows that for most of the detrending methods, the tail indices of
all of our variables of interest are small, pointing towards fatter tails. In particular, these
indices (i.e. small p̂’s) provide a strong indication that the assumption of Gaussianity does
not hold (consistent with evidence from Table 1), rather a power law is a more plausible fit
(i.e. p-values greater than 0.1), and there is strong evidence of fat tails in the data.

16It is important to note that non-normality as documented in Table 1 does not imply that the distribution
of the variable in question has fat tails. The reported test statistics in Table 2 provide evidence of the presence
(and significance) of fat tails.

11



Quantitatively, we do observe some differences across the estimates and the associated
standard errors of the tail indices, for example under linear and first-difference detrending,
the standard errors are larger than other detrending methods and therefore the goodness-of-
fit test does not pass. However, both the estimates and the standard errors of the tail indices
for other filtering techniques are quite comparable. Reported p-values of our tests show that
in almost all cases (barring the CF filter for inflation and the interest rate and a linear trend
for output and interest rates), the p-values are always bigger than 0.1 indicating that data
are approximated well by a power law and therefore the fat tail indices are indeed significant
and meaningful. In the empirical implementation and simulation exercises reported below
we focus on the tail indices estimated for HP-filtered data. We use the HP-filter p̂ estimates
because tests show that the variables for the NK model are indeed power law distributed
(for quarterly and yearly data) and that HP filtered data are most commonly employed in
DSGE models.
In the empirical implementation and simulation exercises reported below we focus on the

tail indices given the relationship to LRMN model representations discussed above. Recall, if
a series has an index of p̂ then, as discussed previously, the tail of the stationary distribution
of that time series only has p̂ − 1 moments - e.g. if the p̂ for inflation is 3 then only the
mean and variance of inflation may exist as moments. Given congruency with LRMN model
representations we therefore employ these p̂ as our empirical targets and stress that while
p̂ itself does not represent a moment, it does suggest how many moments a variable may
have. We therefore also use the implied moments from the tail index as additional empirical
targets in our analyses.

5. Structural Estimation

5.1. Method

We denote a column vector of empirical targets (e.g. tail indices from Table 2) as κ
and note that coupling the time varying VAR form of a model’s solution with an observer
equation (using HP filtered data) allows us to get via a Kalman smoother the smoothed
values of the state vector which are used to calculate model targets. Model targets given a
parametrization of µ are denoted by κ(µ). Targets can be tail indices estimated using Clauset
et. al (2009) which we use in Section 5.2 and/or implied moments from tail indices which
we use in Section 5.3. For any targets we search over the parameter space to minimize the
squared difference between κ and κ(µ) in order to estimate values for µ; i.e., our estimates
are delivered by

min
µ

z = [κ − κ(µ)]′[κ − κ(µ)] (32)

with standard errors computed using the Hessian of the above objective function at the
parameter estimates. This minimum distance estimation method is not just distribution free
but also does not necessarily entail the matching of any particular set of moments if the
empirical targets are not moments but tail indices. Why is our method distribution free?
We note that nowhere in the model specifications have we assumed that the iid innovations
follow any particular distribution. Further, we note that the use of a Kalman smoother does
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not require the assumption of a distribution for errors in a state-space; it is a calculation
exercise and a Kalman filter is only optimal in the event that additive noise is assumed to
be Gaussian, see Lutkepohl (2007) and references therein.17 We do not need for the filter
nor the associated likelihood function to be optimal since we do not use those objects; all we
need is that given a parametrization for µ that the Kalman smoother allows us to calculate
the smoothed values from a state space specification.18

Our method does not necessarily entail the matching of any moments if the empirical tar-
gets (κ) are only tail indices. Recall from the discussion above that the tail index associated
with a LRMN specification specifies the number of finite moments associated with a time
series, and not any particular set of moments. We next describe the particular DSGE model
we implement and then present estimation results. Step by step details on the estimation
procedure are provided in Appendix B.

5.2. Model

We adopt a three equation NK model in which a system is written for deviations of
output from trend (yt), inflation (πt) and nominal interest rates (rt) with three structural
processes (ζ1t, ζ2t and ζ3t) that respectively reflect preference changes in the Euler equation,
exogenous changes in the marginal costs of production in the Phillips curve and a shock to
policy.19 The system is given by

yt = Et(yt+1)− τrt + τEt(πt+1) + ζ1t, (33)

πt = βEt(πt+1) + κyt + ζ2t, (34)

rt = θrt−1 + (1− θ)γ1πt−1 + (1− θ)γ2yt−1 + ζ3t, (35)

ζ1t = ρ1ζ1t−1 + ε1t, ε1t ∼ iid(0, σ21), (36)

ζ2t = ρ2ζ2t−1 + ε2t, ε2t ∼ iid(0, σ22), (37)

ζ3t = ρ3ζ3t−1 + ε3t, ε3t ∼ iid(0, σ23). (38)

17Following Lutkepohl (2007) we note that “...it is possible to justify the Kalman filter recursions even if
the initial state and the white noise processes are not Gaussian.”
18Appendix B provides details.
19We note that in our context, the theoretical mean approximation error for inflation is unbounded due

to its dependence on the variance of inflation which is not finite. However, the finite sample approximation
error can be small even when the theoretical mean approximation error is unbounded. Engsted et al. (2012)
study the magnitude of the approximation error in a log-linearized model for stock prices, introducing
extremely large deviations, in fact even explosive bubbles in stock prices, such that the prices can drift
far from the linearization point. In a single equation framework, they show that despite the presence of
theoretically unbounded mean approximation error, numerically there is a very small approximation error
due to log-linearization as samples are finite. Moreover, they point out that the issue of approximation error
is minimal when the sample size is small. In our context, it is also unlikely that numerically approximation
errors undermine our core results since the time-series data we employ is also finite and relatively small.
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This model takes the form of a time varying state equation when we include SGCG learning
in this framework

Xt = Γb2t−1Xt−1 + ΨUt (39)

bt = bt−1 + gXt−1(Xt −X ′t−1bt−1), b0 given. (40)

to which we append an observer equation of the form

Yt = H ′Xt. (41)

We use the state space above and a parameterization for µ to obtain our variables of interest.
Prior to presenting estimation results, we discuss the potential issue of identification.

5.3. Identification

Given that in any DSGE empirical implementation, the identification of parameters from
data is a concern, we first address this potential issue. The literature offers various ap-
proaches to estimate the parameters of a DSGE model: maximum likelihood, the method
of moments, indirect inference etc (see DeJong and Dave, 2011). A common feature across
these methods is that the underlying generic DSGE model is usually a linearized version with
RE and Gaussian shocks. Irrespective of estimation technique, DSGE models are constantly
confronted with the issue of identification. Among recent contributions to addressing these
identification issues in DSGE models are Iskrev (2008) and Iskrev (2010), Canova and Sala
(2009), and Komunjer and Ng (2011). However, the issue of identification persists as noted
by Canova and Sala (2009) for RE environments and the issue may also affect models that
adopt AL (Milani, 2012).
In our context we introduce AL in an otherwise standard NK DSGE model. However, our

model characterization alters the assumption on the underlying DGP from a fixed coeffi cient
VAR to a LRMN. This deviation has its trade-offs. While we aim to contribute to the
literature in understanding the potential channels that incorporate the empirical regularity
of fatter tails evident in data into a DSGE framework, a formal test for identification (as
in Koumunjer and Ng, 2011) is beyond the scope of the current analysis. However, in lieu
of such concerns, we conduct a direct check of whether our procedure leads to consistent
estimates, and whether the filtered states are reasonably well behaved, to have confidence in
the inference about the key parameters of interest, specifically the constant gain parameter.
In particular, we draw 10,000 series of each of the shocks (ε1t, ε2t, ε3t) of length 1000 from

a uniform distribution. We retain a T length of the errors (discarding an initial burn in)
corresponding to the length of our data. For each of the 10,000 draws of shocks, we simulate
our variables (output, inflation and the interest rate) using our model in (21)-(24) and
Milani’s (2011) estimates. We average this data and use this data for our estimation exercise.
In the estimation exercise, we match the empirical and model calculated tail indices of all our
variables of interest jointly. Under this specification, if we can recover Milani’s estimates from
our estimation procedure (which were the assumed parameters for our simulated data) we
will alleviate concerns relating identification and the consistency of our estimates. We present
our results from this exercise in Table 3, which confirm that the estimates are remarkably
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close to Milani’s estimates with extremely small standard errors.20 These results give us
confidence that the estimated parameters reported in next sections are also identified.

Table 3. Estimates (Sim. Data)
All Series

(1) (2) (3)
Milani Est.

γ1 1.4170 1.4194
γ2 0.2210 0.2223
θ 0.9498 0.9493
κ 0.0350 0.0349
τ 0.2360 0.2373
ρ1 0.3538 0.3565
ρ2 0.1746 0.1763
ρ3 N/A 8.8E-10
β 0.9615 0.9534
g 0.0196 0.0206
σ1 0.7700 0.7751
σ2 0.2970 0.2959
σ3 0.2070 0.2022
z 9.039E-3

5.4. Results: Matching Tail Indices

Our first estimation results minimize the objective function defined as the distance be-
tween the empirical and model targets, where targets are the tail indices for all of the
variables, as follows:

min
µ
z =

 py

pπ

pr

−
 p̂y(µ)

p̂π(µ)
p̂r(µ)

′  py

pπ

pr

−
 p̂y(µ)

p̂π(µ)
p̂r(µ)

 , (42)

where pi, i = y, π, r denotes the tail index of a series (empirical target) and p̂i(µ), i = y, π, r
denotes the tail index from the corresponding model based counterpart (model target), given
a parametrization µ.
Table 4 presents the main results for this estimation exercise. In column 2 we present

the estimates from Milani (2011) as a reference point and column 3 presents parameter
estimates (and respective standard errors). These results show that apart from the constant
gain parameter (g) the rest of the parameters are not very different from Milani (2011) which
further explains small standard errors.

20SEs are not reported in Table 3 as they are in the order of 10E-4.
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Table 4. Matching Tail Coeffi cients
Tail Index Tail Index

(1) (2) (3) (4)
Milani Est. (Std. Err.) Est. (Std. Err.)

γ1 1.4170 1.4093 (0.0001) 1.4093
γ2 0.2210 0.2202 (0.0001) 0.2202
θ 0.9498 0.9513 (0.0001) 0.9513
κ 0.0350 0.0345 (0.0004) 0.0345
τ 0.2360 0.2317 (0.0004) 0.2317
ρ1 0.3538 0.3605 (0.0001) 0.3605
ρ2 0.1746 0.1791 (0.0062) 0.1791
ρ3 N/A 0.1821 (0.0434) 0.1821
β 0.9615 0.9628 (0.0012) 0.9628
g 0.0196 0.0513 (0.0001) 0.0513 (0.0130)
σ1 0.7700 0.7633 (0.0110) 0.7633
σ2 0.2970 0.2903 (0.0035) 0.2903
σ3 0.2070 0.2055 (0.0410) 0.2055
z 3.0081E-13 1.151E-06

In addition to the direct tests conducted in Section 5.2, we now perform two additional
analyses to investigate whether the estimate reported for g (which is remarkably different
from Milani (2011) and other literature on AL) suffers from identification issues i.e., if
there are alternative values of g which may also minimize our value function. In our first
analysis, we study how the value of the objective function in the last estimation changes for
various values of g while keeping all the other parameters fixed at the estimated values. The
illustration is a way to identify if various values of g can deliver convergence of value function
to numerical zero. We present this illustration in Figure 1. It is clear that the minimum for
the value function is only achieved at a specific estimate of g as provided in Table 4.21

21It is important to note that the graphical illustration is adjusted in order to avoid large values of the
objective function especially when g is greater than 0.1. Despite this adjustment, graphical illustrations can
be deceptive to the naked eye and therefore we specify the unique value of g and the corresponding converged
value of the objective function at the top of the graph.
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Figure 1. The Objective Function (z: Equation 42) vs. g.

In our second analysis, we only estimate the constant gain (g) and fix all the values of
the parameters in µ at the values given in Table 4, column 3. We choose these values for two
reasons. First, the estimates are not very different from Milani (2011); second, it provides
us with another check to investigate if we can recover the value of g from Table 4 column 3.
Moreover, this analysis allows us to address the issue of estimating more parameters while
minimizing the distance between the empirical and model targets in our last estimation. We
present the results of the estimated g and the corresponding standard errors in Table 4,
column 4. We recover the same value of g as reported in column 3.
Given our results show a larger than usual estimated value for the gain parameter, we

explore an additional concern. The first is whether our particular LRMN does indeed return
low tail indices as the gain (g) increases for variables of interest. This is an important
(simulated) comparative static to conduct since constant gains closer to zero are associated
with RE and thus model variables should have larger tail indices indicating proximity to
Normality.
Recall that the LRMN representation of our system of interest is given by equations

(17)-(20). Our first step in conducting the simulations is to draw shocks (εt) from a known
distribution. We choose a uniform distribution with support from 0 to 1 and draw 5000
series of length 1000. For each εt series of length T = 1000, we simulate the above system
using as a baseline the parameter estimates from Table 4, column 3. This allows us to
obtain 5000 simulated series for Xt for a given value of the gain parameter. For each of the
5000 series we estimate the tail index and then average that estimate across the 5000 series.
Thus, for a given gain parameter we obtain the average p̂. We then repeat the same process
by varying g from 0 to 0.1. We plot our comparative statics for the estimated average p̂
corresponding to the constant gain learning parameter in Figures 2-4. They show that for
all the variables of interest (Xt), the average tail index monotonically decreases as the value
of the constant gain parameter increases. In essence, the model does seem to suggest fatter
tails for the stationary distribution of simulated macroeconomic aggregates as the learning
horizon decreases.
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Figure 2. Simulated Output Tail Indices vs. g.
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Figure 4. Simulated Interest Rate Tail Indices vs. g.

5.5. Results: Matching Tail Indices and Moments

The analyses in the last estimation exercises minimized the distance of our objective
function by matching the tail indices only. However, this raises an alternative concern that
while our model is successful in matching fat tails it may erode model performance on other
dimensions. Moreover, matching only a few targets reduces the number of free parameters
one may be able to estimate. To tackle these concerns, we expand the targets we match in
our next two estimation exercises while estimating more parameters.
The tail index summarizes the heaviness of the tail, and characterizes also the existence

of finite moments of the entire distribution. In particular, the relation between the tail index
(p̂) and the existence of the number of moments where n denotes that number is:

n = p̂− 1. (43)

Higher moments such that n > p̂ − 1 are infinite and therefore do not exist. Recall from
Table 2 that the tail indices for quarterly HP-filtered output, inflation and interest rates are
as follows: py = 3.6395 , pπ = 2.4898 and pr = 4.8613. As a result the number of moments
that are finite for output, inflation and interest rate, respectively are ny = 2, nπ = 1 and
nr = 3. Letting m denote the exact value of a moment, this implies that only first two
moments i.e., the mean (my

1) and standard deviation (my
2), exist for output, only the first

moment i.e., the mean (mπ
1 ) exist for inflation and the first three moments i.e., mean (mr

1),
standard deviation (mr

2) and skewness (mr
3) exist for the interest rate. Using this information

we re-estimate our parameters by using an objective function that consists only of the the
value of finite moments, determined by the tail indices in the data. In the second exercise we
include both the value of moments and the value of tail indices for all the variables jointly.
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Corresponding objective functions for these exercises therefore are as follows:

min
µ
z =


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1

mr
2

mr
3

−


m̂y
1(µ)

m̂y
2(µ)

m̂π
1 (µ)

m̂r
1(µ)

m̂r
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. (45)

While minimizing these additional objective functions, we estimate an expanded set of
parameters which allows us to investigate not only how the constant gain (g) alters but also
how the transmission mechanism changes under our new objective functions. In particular
for the first objective function, we estimate the following parameters µ = [γ1, γ2, θ, κ, τ , g]
and for the second exercise our estimated parameters include µ = [γ1, γ2, θ, κ, τ , ρ1, ρ2, ρ3, g].
All other parameters not in µ are fixed at Milani’s posterior mean. Table 5 presents the
main results for these estimation exercises: columns 2 and 3 present Milani’s estimates and
the 95% confidence intervals while columns 4 and 5 respectively present our estimates and
standard errors for our parameters under objective function 44 and 45.
We draw three inferences. First, the estimated g is consistently large and echoes our

previous results while minimizing our new objective functions. Second, we observe some
deviation from Milani’s (2011) posterior mean values reported in column 3, however, almost
all of our estimates in column 4 and 5 (barring θ and ρ1 which deviate only slightly), lie within
Milani’s 95% credible intervals reported in column 3. Third, since a priori it is not clear from
a theoretical perspective how changing the objective function in our estimation exercise (by
sequentially increasing the number of moments we match) relates to the underlying linear
recursion with multiplicative noise (LRMN) that governs the adaptive learning environment,
this exercise allows us to investigate the sensitivity of g to changing objective functions.22

22Theoretically we know that (i) as the probability mass above one of the multiplicative noise term (P (Φt >
1)) increases then the learning environment would deliver increased volatility and dispersion (ii) we also know
that the constant gain that tries to match volatility and dispersion is related to that mass as shown in the
simulation based comparative statics (as the gain increases the tail indices fall). It could be that on the
one hand as the econometric objective function F is made richer that indeed a higher g is needed as more
information is being used to estimate parameters. Alternatively it could be that the increased amount of
information is redundant as all the underlying unknown DGP needed was already contained in the tail index
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Our results indicate that quantitatively our estimated of g is very similar across various
objective functions.

Table 5. Matching Tail Coeffi cients or/and Moments
Moments Tail and Moments

(1) (2) (3) (4) (5)
Milani 95% Credible Interval Est. (Std. Err.) Est. (Std. Err.)

γ1 1.4170 [0.97 - 1.86] 1.5975 (0.0001) 1.5177 (0.0012)
γ2 0.2210 [0.06 - 0.43] 0.3513 (0.0012) 0.1212 (0.0003)
θ 0.9498 [0.91 - 0.98] 0.9305 (0.0002) 0.8527 (0.0048)
κ 0.0350 [0.019 - 0.053] 0.0420 (0.0024) 0.0231 (0.0044)
τ 0.2360 [0.03 - 0.55] 0.0359 (0.0002) 0.3027 (0.0002)
ρ1 0.3538 [0.19 - 0.50] 0.3538 0.5466 (0.0336)
ρ2 0.1746 [0.04 - 0.31] 0.1746 0.2662 (0.0001)
ρ3 N/A N/A 0.0000 0.0034 (0.0001)
β 0.9615 N/A 0.9615 0.9615
g 0.0196 [0.015 - 0.025] 0.0571 (0.0042) 0.0572 (0.0032)
σ1 0.7700 [0.69 - 0.86] 0.7700 0.7700
σ2 0.2970 [0.27 - 0.33] 0.2970 0.2970
σ3 0.2070 [0.19 - 0.23] 0.2070 0.2070
z 2.94E-08 8.97E-04

To again investigate any potential identification issues that may be of a concern if various
values of a particular parameter can deliver convergence of the value function to numerical
zero, we present Figures 5 and 6 respectively for our objective functions described above.
These figures further moderate concerns regarding identification issues.

to begin with. This is why comparison across the estimates of g based on different objective functions is an
empirical question, described in this section.
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Figure 5. The Objective Function (z: Equation 49) vs. µ = [γ1, γ2, θ, κ, τ , g].
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The foremost conclusion from Table 5 and the corresponding figures is that our estimated
constant learning gain parameter (g) is bigger than the estimate usually documented in the
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existing literature (between 0.01-0.03) and the 95% credible interval reported by Milani. In
comparison, our estimated g is almost double in both estimation exercises. Intuitively, g is
inversely proportional to the amount of past data utilized by the agents in forecasting future
macroeconomic variables. Roughly speaking, an estimated value of 0.1 of g translates into
approximately 35 years of time series data utilized by the economic agents as opposed to
60+ years of time series data which corresponds to the estimated value of 0.03 of g.

5.6. Summary

Our model, estimation results and the analyses present an endogenous channel via SGCG
learning that delivers fat tails for variables in an otherwise standard model. We show that
without altering the nature of structural shocks and the transmission channel, a DSGE
model under AL endogenously delivers model dynamics that better replicate observed fat
tails without eroding the model’s performance on other dimensions. In particular, we see that
the baseline estimation, the estimation that accounts for potential identification issues, and
the expanded estimation exercises consistently find that a higher constant gain parameter
g is successful in delivering fat tails. We further note that the estimates of the standard
deviation of shocks either don’t increase dramatically in the baseline estimation or our main
results sustain when the shock size is fixed at the values as used in the literature. Therefore
larger than usual shocks do not seem to be driving the dynamics to deliver fat tails in the
data under the LRMN assumption.
Moreover, in our expanded estimation exercises where our targets are both tails and

moments, we also show a high gain in our model is responsible in generating fat tails without
sacrificing the fit of the model regarding the finite moments of the distribution of output,
inflation and interest rate. These results highlight that a minimal role may remain for
alternate structural parameters that govern transmission mechanisms, in accounting for fat
tails in macroeconomic data. We further show in the next section that a model without the
constant learning mechanism is less successful in matching the statistical regularity of fatter
tails in data. This evidence reassures us that absent learning mechanisms, other transmission
mechanisms may not be enough to account for observed fat tails. In summary, we conclude
that our core result of a higher constant gain is robust to the various specifications provided
in the prior sections.

6. Simulations

We assess whether our DSGE model under SGCG learning outperforms other plausible
alternatives in accommodating fat tails as evidenced in the data. To do so, we simulate data
under various models. For each of the model specifications, we draw 1000 series of εt and
retain a T length of errors (discarding an initial burn in) corresponding to the length of our
data. For each of the 1000 series, we simulate the model for yt, πt and rt and estimate the
respective fat tail index (p) using Clauset et. al’s (2009) procedure. In particular, our first
set of data is simulated using our DSGE model under SGCG learning and we call it the
“Adaptive Learning Model”. Under this model, εt is drawn from an iid Normal distribution
with mean 0 and variance 1. Our second set of data is simulated by using exactly the same
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draws of εt as in the Adaptive Learning Model, but instead we close the model under RE. We
call this specification the “Rational Expectations Model”. Lastly, for our third simulations,
we again close the model under RE but instead replace the Normal distribution of εt with
a Student’s-t non-Gaussian process that has a priori fatter tails. The degree of freedom of
3 embodies the idea that the world is quite far from Gaussian, and quite extreme. Like
Curdia et. al. (2014) we also choose the degree of freedom of 15 which captures the view
that the world is not quite Gaussian, but not too far from Gaussianity either. We call
these specifications the “Rational Expectations (t-dof3) Model”and “Rational Expectations
(t-dof15) Model”, respectively. For the simulated series from Adaptive Learning, Rational
Expectations and Rational Expectations (t-dof15) models, we estimate the p’s and illustrate
the results in Figure 7 and Figure 8. Moreover, for the simulated series from Adaptive
Learning, Rational Expectations and Rational Expectations (t-dof3) models, we estimate
the p’s and illustrate the results in Figure 9 and Figure 10.
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Figure 7. Simulated CDFs.
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Figure 8. Simulated PDFs.

Figure 7 (Figure 9) and Figure 8 (Figure 10), respectively provide the cumulative and
probability distribution function of the tail indices (p’s) estimated for each of the 1000
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simulated series under the three alternatives described above. For the cumulative distribution
function (CDF), the figure captures the probability that the p takes a value less than or equal
to p. The dotted line shows the estimated p from the actual data. Two observations are
clear from Figure 7. First, the probability of p taking a value closer to the p estimated from
the data, is always higher under the AL model than under other alternatives. Second, for
each of output, inflation and the interest rate, the estimates of p from other alternatives first
order stochastically dominate the estimates of p under AL. Due to stochastic dominance, it is
clear that for each of the 1000 series of output, inflation and interest rates, the estimated p is
always smaller (hence simulated data depicts fatter tails) under AL. Figure 8 illustrates the
same results using the probability distribution function and shows that the average p under
AL is closer to the p in the data. Furthermore, in Table 6. (Table 7.) Kolmogorov-Smirnov
test statistics at 1 percent significance level reject the null hypothesis that the two samples
(from our model versus other alternatives) are drawn from the same distribution.

Table 6. Kolmogorov-Smirnov Test (p-value and Test decision (H))
AL and RE AL and RE (t−dof15) RE and RE (t−dof15)
p-value H p-value H p-value H

yt 0.0000 1 0.0000 1 0.2575 0
πt 0.0000 1 0.0000 1 0.0091 1
rt 0.0000 1 0.0000 1 0.4931 0

Table 7. Kolmogorov-Smirnov Test (p-value and Test decision (H))
AL and RE AL and RE (t−dof3) RE and RE (t−dof3)
p-value H p-value H p-value H

yt 0.0000 1 0.0000 1 0.0000 1
πt 0.0000 1 0.0036 1 0.0000 1
rt 0.0000 1 0.0000 1 0.0000 1

Figures 9 and 10 show similar results as previously for output and the interest rate. For
inflation, however, the Rational Expectations (t-dof3) model is able to deliver fat tails in
line with the data and closer to the tails delivered by the Adaptive Learning model but the
channel is as discussed, exogenous. The Adaptive Learning model on the other hand provides
an endogenous channel for fat tails which originates via a behavioral intuition based on the
process of expectations formation by an agent with limited use of data.
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7. Conclusion

In accounting for large cyclical fluctuations of macroeconomic series two approaches are
available. The first assumes non-Normal distributions for innovations to structural shocks
and has seen some success in being empirically validated. The second proposes an en-
dogenous mechanism, adaptive learning, which delivers a model representation that entails
multiplicative and additive noise. We evaluate this mechanism and find that it can match
observed fat tails provided that the gain parameter which governs the extent of learning is
larger than usually assumed in the literature. This finding is similar in spirit to the debate
implicit in Sims (2001) and Cogley and Sargent (2001, 2005) who were concerned with the
representation that best suits inflation; our result however is driven by recognizing that con-
stant gain learning naturally leads to an empirical specification that features multiplicative
and additive noise.
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Next, our simulation exercises indicate a monotonically decreasing relationship between
the gain and the possibility of fat tails in macroeconomic aggregates. Moreover they sug-
gest that AL outperforms fat tailed distributional assumptions on innovations to exogenous
structural shocks in being able to match stylized facts along the fat tail dimension. Taken
together, our empirical and simulation exercises suggest that AL representations can lead to
regularly occurring large fluctuations in macroeconomic systems, and match reality.
It is important to point out that, in Hanson’s (2014) terminology, our work is contributing

to the “outside econometrician”perspective since we aim to reconcile fat tails observed in
the data with the model and therefore simplify the framework by using a representative
agent set-up. However, it is equally interesting to explore how an “inside econometrician”
perspective captured by a heterogenous agent framework would allow in reconciling the fat
tails in data with the model. Recent empirical work (see e.g., Carroll, 2003; Mankiw et
al., 2003; Branch, 2004) documents the disagreements and heterogeniety in the beliefs of
agents in the survey data. However, theoretically, only a scant literature allows different
fractions of agents to form expectations that correspond to either rational and/or boundedly
rational/adapative expectations (e.g., Levine (2010), Branch and McGough (2016)). In our
context, it is an open question as to how heterogeneous beliefs of agents impact reduced
form relations governing the evolution of the economy, which Branch and McGough (2016)
also point out is an open issue.23

23To model an “inside econometrician perspective”whereby agents are modeled in more detail, one would
move from the representative agent model (as is presented in this paper) towards an heterogenous agent
framework. It is interesting to note that in such a setting an agent who defects from using lets say a
decreasing gain in favor of constant gain (while majority of agents use decreasing gain), the defector would
be worse off. This is in constrast with the “outside econometrician perspective” presented in this paper
whereby the goal is to match the volatility as observed in the data which is better captured by the constant
gain versus decreasing gain. We thank a referee for pointing out the intuition of various gain rules in the
heterogenous setting instead of representative agent setting as in our set up.
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Appendix A: Goodness of Fit Test

In this Appendix we detail the method used in conducting the goodness of fit test for our
data. This procedure allows us to formally test the hypothesis of whether the distribution of
the data is power law and consequently if the fat tail indices are significant and meaningful.

1. Fit the empirical data to the power law model and estimate p̂ and the lower Ymin using
the methods described in Section 4.1 and calculate the Kolmogorov-Smirnov (KS)
test statistic for this fit. In particular, KS statistics is simply the maximum distance
between the CDFs of the data and the fitted model:

D = max
y≥Ymin

|S(y)− P (y)|

where S(y) is the CDF of the data for the observations with the value at least Ymin
and P (y) is the CDF for the power law model that best fits the data in the region
yi > Ymin

2. To generate a large number of synthetic power-law distributed data sets with the same
p̂ and Ymin (as estimated in (1)) as well as same length as the empirical data (T ), we
proceed in two steps. Denote by ηtail the number of obsevations above Ymin. First, to
construct the synthetic data above Ymin (yi ≥ Ymin), we generate with a probability
ηtail/T a random number (yi) drawn from a power-law distribution (which shares the
same p̂ and Ymin as our empirical data but the observation are from the fitted power
law). However, to construct the synthetic data below Ymin (yi < Ymin) we generate,
with a probability 1 − ηtail/T , a random number yi such that we select one element
uniformly at random from among the elements of our empirical dataset. We repeat
this for all the T observations and this provide us with a comparable synthetic datasets
which follow a power law above Ymin but has the same non-power law distribution as
our empirical data. We construct many of such synthetic datasets, say 10,000.

3. Fit each synthetic data (constructed in step (2)) to its power law model and calculate
the KS statistics. Then compare the KS statistics for each synthetic data with that
of our empirical dataset from step 1 and count what fraction of the time the resulting
statistic is larger than the value for the empirical data. This fraction is our p-value.

4. We repeat the process for each of the 10,000 synthetic dataset so that our p-value is
accurate upto 3 decimal places. To do so we choose a very conservative p-value of 0.1
as a cut-off point such that p < 0.1 rules out the power law and the associated p̂′s.
p = 0.1 means that 1 in 10 cases, we would merely by chance get data that agree as
poorly with the model as the data we have.
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Appendix B: Structural Model, Kalman Filter, Stan-
dard Errors

Consider a linear New Keynesian (NK) model featuring variables in deviation from steady
state so there are no constant terms,

0 = −yt − σit + σζ1t + Et(yt+1) + σEt(πt+1), (46)

0 = κyt − πt + ζ2t + βEt(πt+1), (47)

0 = (1− θ)γ2yt−1 + (1− θ)γ1πt−1 + θit−1 + (1− θ)ζ1t + ζ3t − it, (48)

ζ1t = ρ1ζ1t−1 + ε1t, ε1t ∼ iid(0, σ21), (49)

ζ2t = ρ2ζ2t−1 + ε2t, ε2t ∼ iid(0, σ22), (50)

ζ3t = ρ3ζ3t−1 + ε3t, ε3t ∼ iid(0, σ23). (51)

The first equation is the IS curve (relating output (y) with inflation (π) and nominal interest
rates (i)), followed by a Phillips curve and a Taylor rule. All three of these structural
equations feature autoregressive shocks (ζ i) with iid innovations (εi) and the six equations
can be written in the forms needed under rational expectations (RE) and adaptive learning
(AL).
In this Appendix we first describe how RE delivers a fixed coeffi cient VAR representation

of a model that then is adopted as the state equation in a state space system. Next, we
show that under SGCG learning the model representation is a time varying coeffi cient VAR
representation that too can be adopted as the state equation in a state space system. Having
obtained the two fundamental representations we then show that the Kalman filter and
smoother recursions apply and argue how exactly distributional assumptions come into play
when specifying likelihood functions, versus the minimum distance empirical exercise we
conducted. In the final section we show how the model is written as a linear recursion
with multiplicative noise (LRMN) that clearly demonstrates how innovations, however small
in a linear model, can accumulate under constant gain learning such that the tail of the
stationary distribution of model variables can be fat, implying a higher probability that the
model exhibits what we term as a “large fluctuation”from trend.

7.1. Model Representation: Rational Expectations

The NK model specified above can be written as

Γ0(θ)Xt = Γ1(θ)Xt−1 + Ψ(θ)εt + Π(θ)ηt. (52)

Solving the above under RE following DeJong and Dave (2011)’s exposition of Sims (2001),
a unique stable solution takes a familiar fixed coeffi cient VAR form:

Xt = F (θ)Xt−1 +G(θ)εt, (53)

where as usual the matrices F and G contain as elements values (or combinations) of θ, the
deep parameters. We note that in order to observe “large”swings in Xt or elements thereof,
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one can either assume large values for εt directly or assume that εt is drawn from a fat tailed
distribution. Therefore, under the RE fixed coeffi cient VAR representation of any model,
exogenous assumptions on εt deliver “large”swings in Xt or elements thereof.
The above equation is said to be the state equation of a time invariant state-space system

when coupled with an observer equation, as follows

Xt = F (θ)Xt−1 +G(θ)εt, (54)

Yt = H ′Xt, (55)

where Yt denotes HP filtered data of dimension K. Given distributional assumptions on the
structural innovations εt the above system is fed into a Kalman filter yielding a likelihood
function L(θ) that is utilized in either a frequentist maximum likelihood approach to esti-
mation or coupled with prior distributions p(θ) in order to calculate Bayesian posteriors.
Having obtained numerical values (estimates) for θ, a Kalman smoother can then be em-
ployed to recursively calculate fitted variables (X̂t). We describe this procedure below after
we describe next the representation of a model under adaptive learning.

7.2. Model Representation: Adaptive Learning

Under AL a solution of the model assumes first that the representative agent knows all
data up until t− 1 so that the model is given by

Xt = A(θ)Et−1(Xt+1) +B(θ)Ut. (56)

Next, a perceived law of motion (PLM) on the part of agents is conjectured as a time varying
analog to the RE solution:

Xt = btXt−1 + ξt (57)

and given the assumption that only data up until t− 1 are known

Xt+1 = bt+1Xt + ξt+1 (58)

Et−1(Xt+1) = bt−1Et−1(Xt) (59)

Et−1(Xt) = bt−1Et−1(Xt−1) = bt−1Xt−1 (60)

→ Et−1(Xt+1) = b2t−1Xt−1 (61)

which is then inserted into the original model to obtain the actual law of motion (ALM) as

Xt = A(θ)b2t−1Xt−1 +B(θ)Ut, (62)

Ut = PUt−1 + εt (63)

where the evolution of bt is governed by the constant gain learning rule

bt = bt−1 + gXt−1(X
′
t −X ′t−1bt−1), b1 = (X1X

′
1)
−1. (64)

Initial beliefs are fixed at b1 = (X1X
′
1)
−1. We note our focus on a constant gain learning

rule versus a decreasing gain learning rule that would replace g with a decreasing function
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of time (e.g. t−1). A constant gain rule allows us to incorporate the notion that only a
fixed past is used in forming expectations. The adoption of decreasing gains is an interesting
comparison to SGCG learning but would not allow us to make a comparison of this model
representation with the LRMN model representation (discussed below). This is important as
it is the congruency between the two model representations under constant gain that allows
for the intuition of large movements in model variables due to a particular accumulation of
otherwise small shocks.
Next we need to write the overall state equation, as follows. Let Zt = [Xt Ut]

′ then

[
Xt

Ut

]
=

 I
m×m

− κ
m×p

0
p×m

I
p×p

−1  βb2t−1
m×m

0
m×p

0
p×m

K
p×p

[ Xt−1
Ut−1

]
+

 I
m×m

− κ
m×p

0
p×m

I
p×p

−1  0
m×p
I
p×p

 εt,(65)

Zt = AtZt−1 +Bεt. (66)

Introducing again the observation vector Yt allows us to specify a time-varying state-space
model

Zt = AtZt−1 +Bεt, (67)

Yt = H ′Zt. (68)

Note that this state space too can be Kalman filtered and smoothed, just like in the rational
expectations case, to obtain smoothed values of Zt, described next.

7.3. Kalman Filtering and Smoothing

Using stand alone notation in this sub-section, consider a fixed coeffi cient (RE) state
space system

Xt = FXt−1 + et, E(ete
′
t) = Ψ, (69)

Yt = H ′Xt, (70)

where et = Gεt relative to previous notation. then following DeJong and Dave (2011) and
Lutkepohl (2007, pp. 626-633) the Kalman recursions can be defined by first defining

Xt|s = E(Xt|Y1, ..., Ys), ΣX(t|s) = COV (Xt|Y1, ..., Ys), (71)

Yt|s = E(Yt|Y1, ..., Ys), ΣY (t|s) = COV (Yt|Y1, ..., Ys). (72)

(We note that this sub-section applies equally to variable coeffi cient (AL) state space systems
using a change of notation). Given definition of the above expectations, the prediction
equations set for 1 ≤ t ≤ T of the filter is given by

Xt|t−1 = FXt−1|t−1, (73)

ΣY (t|t− 1) = FΣY (t− 1|t− 1)F ′ + Ψ, (74)

Yt|t−1 = HXt|t−1, (75)

ΣY (t|t− 1) = HΣX(t|t− 1)H ′, (76)
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the correction equations set for 1 ≤ t ≤ T of the filter is given by

Xt|t = Xt|t−1 + Pt(Yt − Yt|t−1), (77)

ΣX(t|t) = ΣX(t|t− 1)− PtΣY (t|t− 1)P ′t , (78)

Pt = ΣX(t|t− 1)H ′ΣY (t|t− 1)−1 [Kalman Gain], (79)

the forecasting equations set for t > T of the filter is given by

Xt|T = FXt−1|T , (80)

ΣX(t|T ) = FΣX(t− 1|T )F ′ + Ψ, (81)

Yt|T = HXt|T , (82)

ΣY (t|T ) = HΣX(t|T )H ′, (83)

and the smoothing set of equations for t < T of the Kalman smoother is given by

X̂t ≡ Xt|T = Xt|t + St(Xt+1|T −Xt+1|t), (84)

ΣX(t|T ) = ΣX(t|t)− St[ΣX(t+ 1|t)− ΣX(t+ 1|T )]S ′t, (85)

St = ΣX(t|t)F ′ΣX(t+ 1|t)−1. (86)

Given the above recursions, if a likelihood approach (frequentist or Bayesian) is to be em-
ployed to estimate the deep parameters θ then that likelihood function can be built using as
input some of the above recursions as

lnL(θ|Y1, ..., YT ) = −KT
2

ln 2π−1

2

T∑
t=1

ln |ΣY (t|t− 1)|−1

2

T∑
t=1

(Yt−Yt|t−1)′ΣY (t|t−1)−1(Yt−Yt|t−1).

(87)
We note the following about the recursions above following DeJong and Dave (2011) and

Lutkepohl (2007). First, the above recursions are specified for a fixed coeffi cient state space
system

Xt = FXt−1 + et, E(ete
′
t) = Ψ, (88)

Yt = H ′Xt. (89)

However, the same recursions can be specified, given suitable notation, for a variable coeffi -
cients system

Xt = FtXt−1 + et, E(ete
′
t) = Ψt, (90)

Yt = H ′Xt, (91)

where the subscript t on Ft and Ψt denote time variation. Second, Lutkepohl (2007. p.
626) writes that “If the normality assumption is dropped, the recursions given below can
still be justified.”Similarly, the Kalman filter and smoother recursions given above can be
used to construct smoothed states X̂t from either a fixed coeffi cients or variable coeffi cients
state space system even if the white noise processes et are not Gaussian. That RE delivers
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a fixed coeffi cient state space system and constant gain AL delivers a variable coeffi cients
state space representation of a model are thus both described above.

7.4. Model Representation: LRMN

Usually the PLM is formed by assuming something close to a RE solution. For example,
above we assumed that the PLM is a time varying VAR since the RE solution takes a VAR
form. Instead let’s assume that the PLM is a time varying moving average (MA) process

Xt = Φ̂tUt (92)

which is still only a slight departure from the above technique since a VAR can always be
written in MA form. Next, assume that Et−1(Xt+1) = Φ̂t−1Ut which yields the ALM

Xt = A(θ)Φ̂t−1Ut +B(θ)Ut. (93)

The evolution of Φ̂t is governed by the constant gain learning rule

Φ̂t = Φ̂t−1 + gUt−1(Xt − Φ̂t−1Ut−1) (94)

and inserting the ALM in place of Xt into this rule yields

Φ̂t = Φ̂t−1 + gUt−1(A(θ)Φ̂t−1Ut +B(θ)Ut − Φ̂t−1Ut−1), (95)

= Φ̂t−1 + gA(θ)Ut−1Φ̂t−1Ut + gB(θ)Ut−1Ut − gUt−1Φ̂t−1Ut−1, (96)

= [I + gA(θ)Ut−1Ut − gUt−1Ut−1] Φ̂t−1 + gB(θ)Ut−1Ut. (97)

The learning model can therefore be written as a LRMN, that is, a recurrence relation

Φ̂t = ΛtΦ̂t−1 + Ωt, (98)

Λt = I + gA(θ)Ut−1Ut − gUt−1Ut−1, g ∈ (0, 1), (99)

Ωt = gB(θ)Ut−1Ut, (100)

Ut = P (θ)Ut−1 + εt, εt ∼ iid(0,Σ). (101)

Our next step is to argue how a tail index for Φ̂t arises in theory. That is, we need to show
that the tail of the stationary distribution of Φ̂t follows a power law. For this purpose we
could appeal to Kesten (1973) if Λt were iid however only εt is iid so we can write instead

Φ̂t = ΛtΦ̂t−1 + Ωt, (102)

Λt = I + gA(θ)P (L)2Lεtεt − gP (L)2L2εtεt, g ∈ (0, 1), (103)

Ωt = gB(θ)P (L)2L2εtεt, (104)

Ut = P (θ)Ut−1 + εt, εt ∼ iid(0,Σ)→ Ut = P (L)εt. (105)

While a formal proof that the tail of the stationary distribution of Φ̂t and therefore Xt (since
it equals Φ̂tUt) follows a power law is beyond the scope of this paper (as the mathematics
for multivariate correlated processes Ut is not available), we can easily show via simulations
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how small realizations of εt can accumulate into small tail indices for model variables. That
is, we can observe large fluctuations from trend for model variables even though the model
is subject to small shocks.

7.5. Estimation Procedure

In this Appendix we detail the method used in our minimum distance estimation of a
vector of deep parameters (µ). First, denote a vector of empirical targets as κ. In our case
this vector can consist solely of tail indices from Table 1 (or tail indices in addition to implied
moments of the tail of the stationary distribution of the series in question). For example,
suppose we wish to only match, by choice of µ, the tail index of HP filtered output (≈ 4 from
Table 1.). Then the empirical target (κ) is just 4. If we wish to match the tail index of HP
filtered output and investment (whose tail index is ≈ 3 from Table 1.) then the empirical
target is the vector κ = [4, 3]′.

1. Having set an empirical target vector κ we next obtain its model counterpart, as
follows. Given a parametrization for µ, the model, written in terms of deviations from
trend so that HP filtered data can be used, in state space form, is

bt = bt−1 + gXt−1(Xt −X ′t−1bt−1), b0 given, (106)

Xt = A(θ)b2t−1Xt−1 +B(θ)Ut, (107)

Yt = H ′Xt. (108)

whereXt denotes model variables, Yt denotes HP filtered data and the deep parameters
µ consist of the constant gain g along with the elements that appear in the matrices
A(θ) and B(θ); H ′ is simply the usual selection matrix for the observer equation that
links observed HP filtered data Yt to its model counterpart Xt. Note that the state
equation is a time varying one, so that this is a time varying state space representation.
Thus, given a parameterization for µ the above delivers a time varying state space
representation of the model. Next, we obtain the smoothed values of the state vector
(X̂t) via a Kalman smoother. Note that the smoother is employed for a given µ.

2. Once the smoothed values X̂t are in hand for a given parameterization of µ we have
a set of series for which we can calculate model counterparts of the empirical targets
(κ) which we denote as κ(µ). When these empirical targets are tail indices we use the
method of Clauset et. al. (2009) to calculate the tail index of the smoothed series (X̂t)
corresponding to a parametrization. Next, suppose that the empirical target is the tail
index for HP filtered output.

3. Given a parametrization of µ we have in hand the column vector of empirical targets
κ and the column vector of their model counterpart κ(µ), we next search over the
parameter space to minimize the squared difference between κ and κ(µ) in order to
estimate values for µ; that is, our estimates are delivered by

min
µ
z = [κ − κ(µ)]′[κ − κ(µ)] (109)
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4. Standard errors are computed using the Hessian of the above objective function at the
parameter estimates (see DeJong and Dave,2011). It is critical to note that this exercise
is not a moment matching exercise in the conventional sense. The vector κ can contain
tail indices as well as implied moments of the tail of the stationary distribution of a set
of series. We make no claims as to the matching of moments, simulated or otherwise,
of the distribution of the data given our exclusive focus on the LRMN assumption
on the DGP and the associated model characterization of the tail of the stationary
distribution of macroeconomic series.

Note that if in step 2 we instead wish to match the tail indices of HP filtered output
and the associated moments of the tail of the stationary distribution of HP filtered output,
then the vector κ would consist of the tail index of HP filtered output (4) followed by the
values of the first three moments of HP filtered output. The rest of the steps then follow as
mentioned above.

7.6. Standard Error Calculation

Our objective function for estimation of parameters is given by

min
µ
z = [κ − κ(µ)]′[κ − κ(µ)] (110)

where, depending on the estimation exercise in question, we vary z to include more than
just the tail indices κ(µ). Once estimates (µ̂) are found by minimizing the above function we
calculate standard errors by first computing the numerical HessianH around those estimates.
Our standard error vector is then given by the square root of the diagnol elements of H−1.
We note that in the construction of these standard errors we “balance” the Hessian by
constructing a scale vector (τ) for estimates and then pre and post multiply H−1 by the
inverse of a matrix consisting of those scale vectors (a standard practice to obtain standard
errors when the ranges of estimated parameters vary widely). Moreover, standard errors
will be small when estimates are close to starting values (and starting values are themselves
converged estimates from another procedure).
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